DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pseudo-daugavet Property for Narrow Projections in Lorentz Spaces

Let X be a rearrangement-invariant space. An operator T : X → X is called narrow if for each measurable setA and each ε > 0 there exists x ∈ X with x = χA, ∫ xdμ = 0 and ‖Tx‖ < ε. In particular all compact operators are narrow. We prove that if X is a Lorentz function space Lw,p on [0,1] with p > 2, then there exists a constant kX > 1 so that for every narrow projection P on Lw,p ‖Id− P‖ ≥ kX ....

متن کامل

WOVEN FRAMES IN TENSOR PRODUCT OF HILBERT SPACES

‎‎The tensor product is the fundemental ingredient for extending one-dimensional techniques of filtering and compression in signal preprocessing to higher dimensions‎. ‎Woven frames play ‎ a crucial role in signal preprocessing and distributed data processing‎. Motivated by these facts, we have investigated the tensor product of woven frames and presented some of their properties. Besides...

متن کامل

Khalil MINIMAL PROJECTIONS IN TENSOR PRODUCT SPACES

It is the object of this paper to study the existence and the form of minimal projections in some spaces of tensor products of Banach spaces. We answer a question of Franchetti and Cheney for finitely codimensional subspaces in C(K ) [1].

متن کامل

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

Multilevel frames for sparse tensor product spaces

For Au = f with an elliptic differential operator A : H → H′ and stochastic data f , the m-point correlation function Mmu of the random solution u satisfies a deterministic, hypoelliptic equation with the m-fold tensor product operator A of A. Sparse tensor products of hierarchic FE-spaces in H are known to allow for approximations to Mmu which converge at essentially the rate as in the case m ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Institute of Mathematics of Jussieu

سال: 2019

ISSN: 1474-7480,1475-3030

DOI: 10.1017/s147474801900063x